Blackberries, Butterflies, Bees and Birds

Common, or Allegheny, Blackberry (Rubus allegheniensis) brambles are blooming in woodlands and meadows throughout the local areas I frequent in central New Jersey and eastern Pennsylvania.  This Rose (Rosaceae) family member can be found from Quebec to Ontario provinces in Canada, south as far as South Carolina and Oklahoma in the United States.  It is also present in California and British Columbia.

Common, or Allegheny, Blackberry (Rubus allegheniensis)

At Bowman’s Hill Wildflower Preserve, near New Hope, Pennsylvania, I found masses of Wild Blackberry blooming in the meadow. Traditionally, the entire meadow is mowed during the winter, but this year a new method of meadow maintenance was introduced, one recommended by the Xerces Society.  Only part of the site was mowed last year, in order to preserve habitat for overwintering insects, birds, and other animals.  This new technique is already paying off, with an impressive display of flowering Blackberry canes, and an equally impressive variety of native pollinators visiting the flowers.

I wasn’t the only one to discover the Blackberries in bloom. From a distance, I could see that at least three Monarch butterflies were already there, flirting and drinking nectar, drawing me in to get a closer look.  They were my first certain Monarch sighting of the season.

Monarch on Common Blackberry (Rubus allegheniensis)

Monarch on Common Blackberry (Rubus allegheniensis)

The Monarchs weren’t alone. Little Wood Satyrs flitted about, occasionally stopping to drink nectar from the flowers.  Little Wood Satyrs are often found where woodlands meet meadow habitat.

Little Wood Satyr on Common Blackberry (Rubus allegheniensis)

Several Red-banded Hairstreaks visited the flowers, along with a few Zabulon Skippers, Eastern Tiger Swallowtails, and Silver-spotted Skippers.

Red-banded Hairstreak hanging out on Common Blackberry (Rubus allegheniensis)

Eastern Tiger Swallowtail drinking nectar from Common Blackberry (Rubus allegheniensis)

Zabulon Skipper drinking nectar from Common Blackberry (Rubus allegheniensis)

Bees and Common Blackberry have a mutually beneficial relationship. Bees are important pollinators for Common Blackberry, and Common Blackberry is an important source of nectar and pollen for the bees.  While I watched, Mining Bees, Bumble Bees, Carpenter Bees and Honey Bees worked the flowers.

Mining Bee (Andrena species) with Common Blackberry (Rubus allegheniensis)

A different Mining Bee (Andrena species) with Common Blackberry (Rubus allegheniensis)

Female Bumble Bee (Bombus species) foraging on Common Blackberry (Rubus allegheniensis). Notice the huge orange load of pollen she has harvested to take back to her nest to feed her larvae.

Eastern Carpenter Bee (Xylocopa virginica) with Common Blackberry (Rubus allegheniensis).

A pair of soldier beetles, Pennsylvania Leatherwings (Chauliognathus pensylvanicus) were mating at the same time the female impressively foraged the flowers for food, a pretty common beetle behavior combination.

A pair of soldier beetles, Pennsylvania Leatherwings (Chauliognathus pensylvanicus) mating, at the same time the female impressively forages Common Blackberry flowers for food.

A Flower or Syrphid Fly (Toxomerus geminatus) ate pollen from the flowers, probably not helping very much to pollinate the Blackberries.  Flies, bees and even beetles all consume some of the pollen.  Only about 2% of pollen is actually used for pollination. The rest serves as an enticement to flower visitors.

A Flower or Syrphid Fly (Toxomerus geminatus) eats pollen from Common Blackberry (Rubus allegheniensis) flowers

A Flesh Fly, and a Robber Fly disguised as a Bumble Bee paused on Blackberry leaves. As a carnivore, the Robber Fly’s mission is to capture and eat other insects.  The disguise may help it elude predators and seem harmless to its intended prey.

A Robber Fly ( Laphria flavicollis) pausing on a Common Blackberry (Rubus allegheniensis) leaf

A Flesh Fly (Sarcophaga species) on Common Blackberry (Rubus allegheniensis)

At a woods edge location nearby in New Jersey, a Bumble Bee and Orange Sulphur enjoyed the nectar the Blackberries offered.

Bumble Bee (Bombus species) on Common Blackberry (Rubus allegheniensis).

Orange Sulphur drinking nectar from Common Blackberry (Rubus allegheniensis).

Common Blackberry has high value for other animals. The insect flower visitors will help to ensure a late summer feast of blackberries for birds, and mammals from mice to fox, and even bear.  They’re very healthy for humans, too!

Ripe fruit of Common Blackberry (Rubus allegheniensis).

Wild Turkey is one of the many animals that benefit from eating Common Blackberry (Rubus allegheniensis) fruit

During the summer, these Common Blackberry brambles offer the perfect nesting habitat for Indigo Buntings. I saw a flash of blue feathers heading for a nearby tree, so they may already be in the process of establishing their nesting territory.

Male Indigo Bunting in Eastern Red Cedar

Multiflora Rose (Rosa multiflora), another Rose family member, is also in bloom.  This species was introduced from Asia for use in hedgerows, especially around farm fields.  As is so often the case, it turned out the introduction was a bad idea.  Multiflora Rose has since become invasive in much of the United States and Canada.  Several states list it as a noxious weed, and some prohibit it.

Plants and even animals that are introduced in a location far from where they evolved often become a problem in their new environment, since the natural predators with which they evolved are not present. In their native locations, these predators help to keep the plant or animal population in balance with other species.  Without these natural checks, the introduced species can crowd out the native plant species on which the animals with which they evolved depend.  We end up losing both plant and animal species as a result.

There is a family resemblance between Common Blackberry and Multiflora Rose, but it’s fairly easy to tell them apart.

Common Blackberry (Rubus allegheniensis) flowers

Common Blackberry flowers are usually white, about 1-1 ½ inches (2.54-3.8 cm) in diameter. The petals have rounded tips.  A large cluster of greenish pistils, the female reproductive flower parts, are visible at the center of the flowers.  These pistils together produce an aggregation of tiny fleshy fruits (called druplets) that are what we know as a blackberry.  The fruits start out green, turning red and eventually black when they’re ripe.  The stamens (male reproductive parts) surround the pistils.  They have white filaments topped with brownish anthers from which pollen is released.

Multiflora Rose (Rosa multiflora) flowers

Multiflora Rose flowers are also usually white, or rarely pinkish. They are just a bit smaller, and the tip of each petal is notched, not rounded.  There is a single greenish pistil at the center of the flower that produces a single round red berry-like fruit called a hip. The pistil is surrounded by stamens with creamy yellow filaments and darker golden anthers.  Multiflora Rose leaves have a distinctive fringe along the sides of the base of the stem.  This is not present in Common Blackberry.

Where I have seen Common Blackberry and Multiflora Rose in close proximity to each other, the pollinators always choose Common Blackberry. It may be a small sampling for a scientific study, but it seems like a pretty telling endorsement to me!

Eastern Tiger Swallowtail drinking nectar from Common Blackberry (Rubus allegheniensis)

Related Posts

Indigo Buntings – Living on the Edge!

For Information on Meadow Maintenance from the Xerces Society

http://www.xerces.org/wp-content/uploads/2014/09/PollinatorsNaturalAreas_June2014_web.pdf

Mader, Eric; Shepherd, Matthew; Vaughan, Mace; Black, Scott Hoffman; LeBuhn, Gretchen. Attracting Native Pollinators: Protecting North America’s Bees and Butterflies. 2011.

The Xerces Society

Resources

Cech, Rick; Tudor, Guy. Butterflies of the East Coast.  2005.

Eaton, Eric R.; Kauffman, Ken. Kaufman Field Guide to Insects of North America.  2007.

Evans, Arthur V. Beetles of Eastern North America.  2014.

Mader, Eric; Shepherd, Matthew; Vaughan, Mace; Black, Scott Hoffman; LeBuhn, Gretchen. Attracting Native Pollinators: Protecting North America’s Bees and Butterflies. 2011.

Marshall, Stephen A. Insects Their Natural History and Diversity. 2006.

Rhoads, Ann Fowler; Block, Timothy A. The Plants of Pennsylvania.  2007

Illinois Wildflowers

USDA NRCS Database

Lady Bird Johnson Wildflower Center

For Information on Mutiflora Rose

USDA NRCS Database

USDA National Invasive Species Information Center

Center for Invasive Species and Ecosystem Health

 

 

 

Pussytoes and Butterflies

Plantain-leaved Pussytoes (Antennaria plantaginifolia)

Plantain-leaved Pussytoes (Antennaria plantaginifolia) bloom in early spring, their flower shoots and leaves emerging from the soil as the temperatures warm and the days lengthen.  The common name ‘Pussytoes’ comes from the resemblance of the tight flower clusters to a cat’s paw, especially when the flowers are still in bud.  Both the common and scientific (plantaginifolia) names refer to the appearance of the mature leaves of this plant, which resemble those of the Plantains (Plantago species).  The leaves remain green throughout the winter.

Plantain-leaved Pussytoes (Antennaria plantaginifolia) in bud

Plantain-leaved Pussytoes are Aster (Asteraceae) family members. Each toe-shaped inflorescence (flower cluster) consists of small tubular ‘disk’ flowers typical of this family.  Somewhat less common in an herbaceous plant (one that’s not woody) is the fact that Plantain-leaved Pussytoes have male and female flowers on separate plants.  As the flowers open, they reveal their sex.   In the male flowers, the stamens (the male reproductive parts) emerge above the tubular corolla, transforming the inflorescence’s appearance from pussytoe-like to more of the look of a white-iced cupcake covered with birthday candles.  In a close-up, a stamen also resembles a box of popcorn (at least to me), with the emerging pollen playing the role of the popcorn spilling out of the box.

Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers beginning to open. Note the stamens emerging from the flowers.

The female flowers look like tiny pompoms, with white hair-like projections (pappus) jutting well past the tube of fused flower petals. After a flower is successfully germinated, the pappus will transform to a light, fluffy appendage attached to the ripe fruit, helping it to disperse with the wind. The genus ‘Antennaria’ refers to the antenna-like appearance of the pappus.

Plantain-leaved Pussytoes (Antennaria plantaginifolia) with female flowers in bloom.

Like most plant species, Plantain-leaved Pussytoes would prefer to be cross-pollinated. This requires the assistance of insects who visit the flowers and transfer pollen on their bodies from male to female plants. But if flower visitors aren’t timely enough, Plantain-leaved Pussytoes can also self-fertilize to produce seed.  It may not be as strong a genetic result, but it’s better than failing to reproduce.

Plantain-leaved Pussytoes can also reproduce vegetatively through horizontal ground-level stems, called stolons. Through this method, Pussytoes can form a spreading colony of shoots, all sharing the same genetics, and all of the same sex.

A colony of Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers.

On a warm spring afternoon, I watched while pollinators visited two separate but near-by colonies of Plantain-leaved Pussytoes, one male, the other female.

Flies were the predominant visitors to the female flowers, both flesh flies and Tachinid flies, although there was also an ant visiting for nectar.

A flesh fly (Sarcophaga species) foraging on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with female flowers

Adult flesh flies often drink nectar from flowers, but their offspring have different needs. The larvae of many species live in and eat carrion, an adaptation that gives this genus (Sarcophaga) its common name.  This important service helps to speed the decomposition of dead animals, and can be used in determining time of death in crime scene investigations.

A Tachinid Fly (Gonia species) feeding on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with female flowers

In addition to pollination, Tachinid flies also work a second job, helping to keep other insect populations in check. Their larvae develop within an insect host, eating it from the inside. They keep the host insect alive by eating its vital organs last, finishing just as the larva completes its own development.  This particular Tachinid Fly (Gonia species) specializes on owlet moth caterpillars.

Tachinid flies and Cuckoo Bees visited the male flowers while I watched.

A Tachinid Fly (Gonia species) feeding on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers

A Cuckoo Bee (Nomada species) feeding on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers

A Cuckoo Bee (Nomada species) feeding on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers. Do the flower clusters look like pussytoes or cupcakes with candles?

A Cuckoo Bee (Nomada species) feeding on Plantain-leaved Pussytoes (Antennaria plantaginifolia) with male flowers. The red-striped stamens with yellow pollen at the top look a bit like a box of popcorn.

Since the Tachinid Flies were the only species I saw foraging on both male and female flowers, they are the most likely to have helped this particular colony of Plantain-leaved Pussytoes with pollination.

American Lady butterflies specialize on some Aster family members as food for their caterpillars, including Plantain-leaved Pussytoes, other Antennaria species, Pearly Everlastings (Anaphalis margaritacea), and a few others.

American Lady butterfly

Plantain-leaved Pussytoes with male flowers can grow to a height of about 8 inches (20 cm). The flower stalks of plants with female flowers are taller, with a maximum height of about a foot (30 cm).

A colony of Plantain-leaved Pussytoes (Antennaria plantaginifolia) with female flowers.

Plantain-leaved Pussytoes can be found in open woods, fields and rocky banks from Maine to Minnesota (except Michigan), south as far as Louisiana and the Florida panhandle. One source, the Flora of North America, says it can be found in Manitoba, Nova Scotia, New Brunswick and Quebec provinces in Canada.

Plantain-leaved Pussytoes (Antennaria plantaginifolia) with A Tachinid Fly (Gonia species)

Related Posts

Asters Yield a Treasure Trove

New England Asters – A Hotbed of Activity!

Feasting on Green-headed Conefower

Resources

Cech, Rick; Tudor, Guy. Butterflies of the East Coast.  2005.

Eaton, Eric R.; Kauffman, Ken. Kaufman Field Guide to Insects of North America.  2007.

Eastman, John. The Book of Field and Roadside.  2003.

Marshall, Stephen A. Insects Their Natural History and Diversity. 2006.

Rhoads, Ann Fowler; Block, Timothy A. The Plants of Pennsylvania.  2007

Stearn, William T. Stearn’s Dictionary of Plant Names.  1996

Bugguide.net

Flora of North America

Illinois Wildflowers

NC State Extension

USDA NRCS Plant Database

 

 

Hepatica’s Survival Strategy

Early spring blooming wildflowers are typically small, lovely, and very delicate looking.  But looks can be deceiving.  Most are actually very tenacious, often with multiple strategies geared to enable them to survive and reproduce.  Take the Hepaticas (Anemone americana, A. acutiloba) for example.

They are among the earliest blooming spring wildflowers, starting as early as mid-March in the southern part of their range to as late as May in the northernmost areas. The flower stalks emerge from their blanket of fallen leaves and bloom well before the new season’s leaves unfurl on the trees above them.

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa) emerging from its blanket of leaves

Hepatica is able to get a head start on the blooming season because its leaves remain viable throughout the winter, gathering energy and photosynthesizing when the conditions permit. When the warmer spring days arrive, Hepatica is ready to go full steam ahead with photosynthesis. The overwintering leaves may be green, or mottled with maroon.

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); note its evergreen leaves

Hepatica produces bright flowers in shades from white to deep blue-violet, perfect for enticing pollinators to assist with cross-pollination. The flowers contrast well with the browns and tans of the decomposing leaf mulch surrounding them, beckoning to early flying solitary bees and flies.

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with whitish flowers and mottled leaves

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with deep violet flowers

Hepaticas have a short blooming season, at a time of year when weather can be unpredictable. It’s more difficult to photosynthesize in cool temperatures, so plants have to be very efficient about how they allocate their energy.  The early flying solitary bees and flies that are their likely pollination partners are interested in nectar, but they need pollen even more.   Many bees and flies consume pollen for the nutrients it provides, and female bees also harvest pollen to feed their larva.  Pollen is a very effective reward to attract these visitors, so effective that Hepaticas have evolved not to put any energy into producing nectar.

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with bee harvesting pollen

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with bee harvesting pollen

The bee moves on to another flower. Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with bee harvesting pollen

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtusa); with bee harvesting pollen

Hepatica does hedge its bets a little. It protects its pollen by closing its flowers at night, and on rainy days.  Cross-pollination with the assistance of an insect is preferred, since a stronger genetic result is more likely.  But if that doesn’t happen, Hepaticas are able to self-pollinate.  It’s better than not reproducing at all.

Regardless of how pollination is achieved, ants disperse Hepatica seeds, as they do for about 30% of spring blooming plants in the forests of the northeast. They are enticed to do this by the nutritious food packets, called eliasomes, that are attached to the seeds.  Ants take the seeds back to their nests, eat the eliasome, and discard the seed, usually in a location that is rich in soil nutrients and safe from seed-eating birds.

Hepaticas employ two strategies to protect themselves from being eaten by browsing insects or larger animals. Like many members of the Buttercup (Ranunculaceae) family, their leaves are toxic.  The newly emerging flower stems, bracts and leaves, as well as the fruits (achenes) that develop later, are all hairy, a characteristic that discourages herbivores, and may also help to keep the plant’s tissues warm during cool spring days and nights.

Hairy fruit capsules and bracts of Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtuse)

Hepatica gets its name from its resemblance to a human liver, both in shape and in the maroon color often seen in its leaves. ‘Hepatica’ is derived from a Greek word that means ‘the liver’.  Other common names for Hepatica are Liverleaf and Liverwort.

There was a period during which it was thought that if a plant resembled a body part, it would be effective in treating diseases of that body part (the ‘Doctrine of Signatures’). As a result, the Hepatica (Hepatica nobilis) native to Europe was used in preparations for treating liver ailments for many years, but more recent scientific testing of Hepatica has refuted its efficacy.

There are two Hepaticas in North America, Round-lobed Hepatica (Anemone Americana, synonym Hepatica nobilis var. obtusa) and Sharp-lobed Hepatica (Anemone acutiloba, synonym Hepatica nobilis var. acuta).  They are named for the shape of the lobes of their leaves.  Aside from that, they look the same.  They are so similar to each other and to the European Hepatica (Hepatica nobilis), that some experts consider the North American species are sub-species of Hepatica nobilis.

Sharp-lobed Hepatica (Anemone acutiloba, synonym Hepatica nobilis var. acuta); Notice the maroon leaves from the previous season; the pointed lobes distinguish this species from Round-lobed Hepatica. The new leaves, flower stems, bracts, and even the flowers are hairy.

Hairy fruit capsules and pointed bracts of Sharp-lobed Hepatica (Anemone acutiloba, synonym Hepatica nobilis var. acuta)

Both the North American Hepaticas can be found in rich woodlands, often on dry upland slopes. Sharp-lobed Hepatica has a preference for rocky soils that have a higher calcium content.  Both can be found in Manitoba, Ontario and Quebec provinces in Canada.  In the United States, Round-lobed Hepatica may be found from Minnesota to Maine, south to Arkansas and the Florida panhandle, but it is more common in the northern and eastern part of its range.  Sharp-lobed hepatica has a similar U.S. range, it is more common in the northern and central parts of its range.  It has not been reported in New Jersey or Florida.

So Hepatica’s survival strategy includes winter-hardy leaves to enable winter and early spring photosynthesis, hairy, toxic foliage to deter herbivores, produce flowers that entice pollinators, but self-pollinate if necessary, and partner with ants for seed dispersal. Seems pretty comprehensive!

Round-lobed Hepatica (Anemone americana, synonym Hepatica nobilis var. obtuse)

Related Posts

A Carpet of Spring Beauty, Woven by Ants

Resources

Eaton, Eric R.; Kauffman, Ken. Kaufman Field Guide to Insects of North America.  2007.

Eastman, John. The Book of Forest and Thicket.  1992.

Foster, Steven; Duke, James A. A Field Guide to Medicinal Plants and Herbs of Eastern and Central North America.  2000.

Rhoads, Ann Fowler; Block, Timothy A. The Plants of Pennsylvania.  2007

Spira, Timothy A. Wildflowers & Plant Communities of the Southern Appalachian Mountains & Piedmont.  2011.

Illinois Wildflowers

USDA NRCS Plant Database

https://www.plants.usda.gov/core/profile?symbol=HENOO

https://plants.usda.gov/core/profile?symbol=HENOA

 

To Love Winter: Striped Wintergreen

It may be winter in the northern hemisphere (at least some days), but there is still plenty to see if you go for a walk in the woods. Some plants may be easier to spot in winter than they are during the growing season, because they have less competition for light, and for your attention.  Striped Wintergreen (Chimaphila maculata) is one of those plants.  Striped Wintergreen can be seen in woodlands, skimming just above the fallen leaves.

Striped Wintergreen (Chimaphila maculata) in fruit

Striped Wintergreen (Chimaphila maculata) in fruit

A clue that winter is the perfect time to look for this plant is found in the translation of its genus, ‘Chimaphila’, whose origins are the Greek words ‘cheima’, which means ‘winter’ and ‘phileo’, which translates as ‘to love’.   Plants of this genus are named for their love of winter.

Striped Wintergreen (Chimaphila maculata)

Striped Wintergreen (Chimaphila maculata)

Why do they love winter? Striped Wintergreen is an evergreen perennial of the forest understory, growing to a height of about 4 – 12 inches (10 – 30 cm).  Somewhat woody at the base of the stem, botanists classify this species as a shrub or subshrub.  Its green and white striped leaves make it easy to spot in the winter months when leaves have fallen from the deciduous trees and shrubs that tower over this diminutive plant.  During the growing season, its taller neighbors often obscure Striped Wintergreen from view, as well as from the sun’s rays.  But throughout winter, Striped Wintergreen’s evergreen leaves have unfettered access to the sun’s energy.  They can photosynthesize, store the energy, and make it available to support Striped Wintergreen’s summertime reproductive efforts.

Striped Wintergreen is known by many other aliases (common names), including Spotted Wintergreen, Pipsissewa, and Rheumatism Root. Some of these names refer to the medicinal uses of this plant. Striped Wintergreen contains chemical compounds with antiseptic, antibacterial, and astringent properties, among others.  One of the compounds, ursolic acid, is effective in treating arthritis and other causes of pain and inflammation.  Striped Wintergreen and a close relative that is also called Pipsissewa (Chimaphila umbellata) have been used to treat urinary tract infections and kidney stones.  The name Pipsissewa is derived from a Creek Native American word that means ‘to break into small pieces’, referring to stones in the urinary tract.

Is it just lucky happenstance that Striped Wintergreen contains compounds that have beneficial medicinal effects for humans? Not completely.  Striped Wintergreen faces some of the same pressures that humans do from bacteria, fungi and microbes, all of which are present in the thousands in the fallen leaves with which Striped Wintergreen lives, and that are working to break down the leaves until they become the next layer of nutrient-filled soil.  Striped Wintergreen has evolved to produce chemical compounds to protect itself from this efficient recycling team surrounding it.  What is lucky for us is that these chemical constituents also have a positive effect in human bodies.

Striped Wintergreen blooms in summer, usually sometime from June through August.

Striped Wintergreen (Chimaphila maculata) in bloom. Fruit capsule from previous season is visible on the left.

Striped Wintergreen (Chimaphila maculata) in bloom. Fruit capsule from previous season is visible on the left.

When fully open, the flowers with their recurved petals resemble crowns, a possible explanation for another common name for this plant, Striped Prince’s Pine.

Striped Wintergreen (Chimaphila maculata) flower. Notice its resemblance to a tiny crown.

Striped Wintergreen (Chimaphila maculata) flower. Notice its resemblance to a tiny crown.

Striped Wintergreen’s primary pollinators are Bumble Bees (Bombus species), but Honey Bees (Apis mellifera) may also be enticed by nectar to visit the flowers.  If the bees help Striped Wintergreen successfully achieve pollination, the resulting fruit is visible throughout the winter.  These dry fruit capsules look like tiny turbans, or miniature winter squash split open at the seams to release the seeds inside.

Striped Wintergreen (Chimaphila maculata) fruit capsules.

Striped Wintergreen (Chimaphila maculata) fruit capsules.

The chemical compounds present in Striped Wintergreen, along with leathery, waxy-coated leaves, are generally effective in deterring herbivores. Deer don’t typically browse this plant, even though it’s one of only a few that are green in the winter.  But the photo below shows that someone, probably a Leaf-cutter Bee (Megachile species), has figured out a way to use parts of the leaves.  Leaf-cutter bees harvest regularly-shaped oval, circular or semi-circular pieces of leaves to construct cells in their nests.

Striped Wintergreen (Chimaphila maculata) with semi-circles removed from the leaf edges, probably by a Leaf-cutter Bee.

Striped Wintergreen (Chimaphila maculata) with semi-circles removed from the leaf edges, probably by a Leaf-cutter Bee.

Striped Wintergreen’s native range is the eastern third of the United States, north to a few locations in southern Ontario and Quebec provinces in Canada. It’s rare at the edges of its range, and is listed as endangered in Illinois, Maine, Ontario and Quebec, and exploitably vulnerable in New York state.

Experience some ‘Winter Love’ (another common name for Chimaphila maculata).  Look for Striped Wintergreen in winter, and you’ll know where to find it during the summer months when it’s in bloom.

Striped Wintergreen (Chimaphila maculata) in bloom.

Striped Wintergreen (Chimaphila maculata) in bloom.

More Reasons to Love Winter

Reasons to Love Winter

An Orchid in Winter

Coralberry – A Winter Standout

What Winter Reveals:  Hoptrees

Late Winter Bird Food

A Winter Garden Can Be a Wildlife Habitat

Resources

Buhner, Stephen Harrod. Pipsissewa.  From Planting the Future, Saving Our Medicinal Herbs, edited by Gladstar, Rosemary and Hirsch, Pamela.  2000.

Eaton, Eric R.; Kauffman, Ken. Kaufman Field Guide to Insects of North America.  2007.

Eiseman, Charley; Charney, Noah. Tracks & Sign of Insects and Other Invertebrates. 2010.

Foster, Steven; Duke, James A. A Field Guide to Medicinal Plants and Herbs of Eastern and Central North America.  2000.

Martin, Laura C. Wildflower Folklore.  1984.

Rhoads, Ann Fowler; Block, Timothy A. The Plants of Pennsylvania.  2007

Evergreen Native Plant Database

Illinois Wildflowers

Lady Bird Johnson Wildflower Center

Native American Ethnobotany Database

USDA NRCS Plants Database

 

 

A Holiday Break

If you feel the need for a little break from all the holiday shopping and festivities, I recommend a walk in the woods.

If the ground isn’t snow-covered, you might look for Patridgeberry (Mitchella repens) while you are out walking. It’s a low evergreen perennial that creeps across the forest floor, resembling strings of tiny holiday garlands.

Patridgeberry (Mitchella repens)

Patridgeberry (Mitchella repens)

Patridgeberry may be peeking out from under fallen leaves.

Patridgeberry (Mitchella repens)

Patridgeberry (Mitchella repens)

Look closely at a patch of moss, and you might find Patridgeberry interspersed with it.

Patridgeberry (Mitchella repens) mixed with mosses

Patridgeberry (Mitchella repens) mixed with mosses

Patridgeberry’s bright red fruit usually persists on the plant throughout the winter and even into spring.

Patridgeberry (Mitchella repens) in spring, with fruit from the previous year still present.

Patridgeberry (Mitchella repens) in spring, with fruit from the previous year still present.

It may actually be easier to find Patridgeberry in the winter than it is during the growing season, depending on its situation. This diminutive ground cover may be hidden by taller herbaceous plants and shrubs in the late spring when it begins to bloom.  If you find it in winter, you’ll know where to look to see the flowers, probably sometime in late May or June.

Patridgeberry (Mitchella repens) in bloom, partially hidden by taller plants

Patridgeberry (Mitchella repens) in bloom, partially hidden by taller plants

Bumble Bees are the primary pollinators of Patridgeberry’s tiny trumpet-shaped flowers. The flowers are always in pairs; in fact, they are actually joined.

Patridgeberry's (Mitchella repens) paired flowers in bloom.

Patridgeberry’s (Mitchella repens) paired flowers in bloom.

The two flowers share a single ovary, the part of the flower from which a fruit develops.  As a result, no more than one berry is produced for every pair of flowers.  You might think of this as analogous to conjoined twins that share a body part.  In recognition of this trait, another common name for this plant is Twinberry.  If you look closely at the fruit in the photo below, you can see two dimples, each with a somewhat jagged edge.  This is where each individual flower was joined to the ovary.

Patridgeberry (Mitchella repens) fruit. Notice the jagged edged 'dimples' where the two flowers were attached to their shared ovary.

Patridgeberry (Mitchella repens) fruit. Notice the jagged edged ‘dimples’ where the two flowers were attached to their shared ovary.

Wild Turkey, Ruffed Grouse, Bobwhite, White-footed Mice, Red Fox and Eastern Chipmunks are among the animals that eat Patridgeberry fruits. The animals subsequently disperse Patridgeberry’s seeds, which are accompanied by natural fertilizer (the animal’s excrement) to give the seeds a good start.

Native American tribes have used various parts of Patridgeberry, sometimes in combination with other plants, as a gynecological aid and pain reliever, as well as to treat rashes and urinary tract problems, among other problems.

Patridgeberry can be found in the woods of the eastern half of the United States, and in the Canadian provinces of Ontario, Quebec, New Brunswick, Nova Scotia, and parts of Newfoundland & Labrador.

For the holidays, do whatever best renews your spirit. A walk in the woods will do it for me.

If the ground is snow-covered, there will be other holiday decorations to see, courtesy of nature. Nothing you have to put up, or take down.  No muss, no fuss.  Just beauty.

Patridgeberry (Mitchella repens) mixed with mosses and mushrooms

Patridgeberry (Mitchella repens) mixed with mosses and mushrooms

Related Posts

A Holiday Display, Courtesy of Nature

Resources

Capon, Brian. Botany for Gardeners.  2005

Foster, Steven; Duke, James A. A Field Guide to Medicinal Plants and Herbs of Eastern and Central North America.  2000.

Hoffmann, David. Medical Herbalism.  2003.

Martin, Alexander C.; Zim, Herbert S.; Nelson, Arnold L. American Wildlife & Plants A Guide to Wildlife Food Habits.  1951.

Moerman, Daniel E. Native American Ethnobotany.  1998.

Rhoads, Ann Fowler; Block, Timothy A. The Plants of Pennsylvania.  2007

Illinois Wildflowers

Missouri Botanical Garden

USDA NRCS Plant Database